Астероидно-кометная опасность: вчера, сегодня, завтра - i_097.jpg

Рис. 5.13. Метеор на фоне рассеянного звездного скопления Плеяды (Ясли). Зафиксирован во время метеорной экспедиции на остров Змеиный 15 августа 2006 г. в 1 ч 19 мин 27 с (UT) с помощью астрокамеры с объективом П-5. Метеор оставил после себя долгоживущий яркий след. В конечной точке видимого пути дал резкую вспышку. Показан один из кадров видеофильма с метеорным явлением (рисунок предоставлен Ю. М. Горбаневым)

Были также обнаружены так называемые β-метеороиды, которые имеют субмикронные размеры (с массами менее 10-13 г) и движутся под действием светового давления по гиперболическим орбитам. Вплоть до орбиты Марса плотность потока микрометеороидов почти одинакова, наклонение их орбит менее 20–30°, а плотность вещества самих микрометеороидов составляет 2–4 г/см3. Ярким показателем наличия большого количества мельчайших метеороидов или, как их еще называют, космической пыли, в Солнечной системе может служить уже упоминавшийся зодиакальный свет.

Считается, что прародителями большинства метеорных потоков являются кометы, так как они имеют рыхлую структуру и иногда распадаются на многочисленные осколки. Хотя метеороидные частицы по химическому составу похожи на каменные и железные метеориты, они тормозятся в атмосфере так, будто плотность их очень мала, т. е. они представляют собой пористые тела, состоящие из более мелких частиц. Среднее значение плотности метеорных тел, входящих в известные метеороидные рои, составляет 0,28 г/см3. Однако прародителями метеоров и болидов могут быть не только кометы, но и астероиды, разрушившиеся в результате столкновений, так как химический состав и кристаллическая структура упавших метеоритов показывают, что метеоритное вещество сформировалось в условиях высоких температур и давлений и, следовательно, они входили когда-то в состав крупных тел, а не могли формироваться в небольших и неплотных ядрах комет.

Используя различные наблюдения метеоров и болидов, можно вычислить орбиты образующих их тел до взаимодействия с атмосферой Земли. Особенно массовые вычисления орбит получаются из радионаблюдений метеоров. В визуальной области для определения точных орбит используются базисные наблюдения метеоров и болидов. Они могут проводиться визуальными, фотографическими и телевизионными методами. Визуальный метод при этом наименее надежный.

Большинство из зарегистрированных метеорных роев имеют расстояние от орбиты Земли до их осевой линии не более 0,08 а.е. (12 млн км). Области, которые орбита Земли проходит относительно осевой линии роя, для большинства метеорных роев при каждом новом прохождении слабо отличаются от предыдущих. Причем наклонение орбит обнаруженных широких роев лежит в пределах 15°, что неудивительно, так как при малых наклонениях увеличивается вероятность столкновения частиц роя с Землей и обнаружения потока. Это, в свою очередь, говорит о том, что наблюдаемое распределение метеоров может и не отражать реального распределения межпланетного вещества в Солнечной системе, а быть лишь результатом наблюдательной селекции.

5.3. Свойства метеорных потоков и метеорных роев

Огромное количество данных наблюдений за небесными объектами, проникающими в атмосферу Земли, падающими на ее поверхность или проходящими вблизи ее сферы действия, полученное за вторую половину ХХ в., не так уж существенно пополняет наши знания о населенности космического пространства объектами из класса малых тел Солнечной системы, о процессах, влияющих на качественный и количественный состав объектов данного класса. Полученные каталоги орбит метеороидов, астероидов, комет пока еще представляют собой собрание характеристик индивидуальных объектов наблюдений и не позволяют исследователям подойти к более или менее однозначным выводам о происхождении и динамике как всего класса малых тел, так и его отдельных составляющих (например, комет, астероидов, метеороидов и пр.) в их возможной взаимосвязи.

При наблюдении метеорных потоков отмечается исключительное многообразие структурных форм метеороидных роев. Данное многообразие обусловлено, по-видимому, сочетанием различных факторов.

Во-первых, это весьма вероятное различие природы происхождения метеороидных роев — кометное, астероидное, планетное и пр. — и вытекающее из этого разнообразие механизмов образования роев. Каждый предполагаемый механизм образования — выброс вещества вследствие неравномерного нагрева поверхности ядра родительской кометы, истечения газового потока с выносом пылевой материи, локальный разогрев, химический взрыв, механический удар, распад самогравитирующего скопления пылевых частиц и т. д. — должен формировать метеороидный рой своей собственной оригинальной структуры.

Во-вторых, процесс формирования роя может оказаться явлением уникальным (однократным), приводящим в конечном итоге через значительный промежуток времени к относительно равномерному распределению метеорных тел вдоль орбиты роя, как, например, у потоков Персеиды, Геминиды и др. Если же процесс формирования роя обусловлен многократным (периодическим) действием некоторого механизма, то в этом случае метеороидные тела должны иметь тенденцию к увеличению концентрации на отдельных участках орбиты роя.

В-третьих, элементы орбит метеороидных тел при движении роя в пространстве претерпевают существенные вариации под действием ряда гравитационных и негравитационных эффектов, что приводит к изменениям первоначальной структуры роя как в продольном, так и поперечном направлениях. Влияние этих эффектов на структуру конкретных роев различно и во многом определяется массой метеороидных тел, составляющих тот или иной рой.

В-четвертых, каждый из известных наблюдаемых метеорных потоков представляет собой уникальное явление. Поэтому при сравнении структур различных метеороидных роев для выявления главных, типичных структурных форм необходимо учитывать различия в условиях наблюдения этих роев.

5.3.1. Характеристики потоков метеороидов. Сравним орбитальные элементы астероидов групп Атона — Аполлона — Амура и метеорных и болидных потоков (последние взяты из работы [Terentjeva, 1990]). Здесь, конечно, подразумеваются орбитальные элементы метеороидных роев, проявляющихся как метеорные и болидные потоки, но для краткости используем термин «орбитальные элементы метеорных (метеороидных) потоков, метеоров, болидов», хотя это и не вполне корректно. На рис. 5.14 (см. вклейку) в пространстве орбитальных элементов (a, e) треугольниками показаны болидные потоки, а кружками — астероиды. Сравнение орбитальных характеристик метеоров, болидов и астероидов, сближающихся с Землей, показывает, что границы между этими популяциями малых тел Солнечной системы условны. Отметим, что для сравнения были выбраны астероиды, кометы и потоки с наклонениями меньше 20° и большими полуосями, не превышающими 6 а.е. Сплошными линиями ограничена область орбит с перигелийными и афелийными расстояниями, равными 1 а.е. Орбиты, лежащие правее правой ветви (перигелийное расстояние q = 1 а.е.), являются внешними для Земли и с ее орбитой не пересекаются. Орбиты, расположенные левее левой ветви (афелийное расстояние Q = 1 а.е.), являются внутренними орбитами и тоже не пересекают орбиты Земли. Орбиты внутри области (Q > 1 а.е., q < 1 а.е.) обязательно пересекают орбиту Земли. Объекты на правой или на левой линии касаются орбиты Земли либо в своем перигелии, либо соответственно в афелии. Прерывистыми линиями обозначены такие же области пересечения с орбитами Марса (1,5 а.е.) и Юпитера (5,2 а.е.).

Метеоры, болиды и астероиды располагаются примерно в одной и той же области, что и позволяет говорить о том, что нельзя связывать метеорные потоки только с кометами. Эти потоки могут порождаться также и астероидами. Косвенным подтверждением этого вывода являются новые наблюдения комет и астероидов. Периодическая комета Швассмана — Вахмана 1 при переоткрытии в 1976 г. имела звездообразный вид и только позже у нее появилась кома. Открытый в 1977 г. Хирон зарегистрирован как астероид? 2060. Спустя 10 лет он вдруг начал проявлять аномальное увеличение блеска — явный признак кометной активности. Сейчас накоплено достаточно фактов, свидетельствующих о том, что Хирон является гигантской кометой диаметром около 200 км. Есть и другие примеры движения комет по астероидным орбитам и наоборот. Это, например, такие периодические кометы, как Неуймина 1, Аренда — Риго, и такие астероиды, как (944) Гидальго, (3552) Дон Кихот, а также астероид 1984 ВС. Кроме того, спектральные данные о болидах, полученные Европейской болидной сетью, показывают, что часть болидов (которая может, кстати, порождать метеориты) явно относится к астероидному типу и при этом является членом метеорного или болидного потока.