Первоначально Европейская болидная сеть представляла собой сеть станций, каждая из которых была оснащена камерой «all-sky», позволяющей на одном снимке получать фотографию всего неба. Каждая камера имела обтюратор для определения скорости болида. Расстояние между станциями Европейской сети составляет около 90 км, а вся сеть охватывает наблюдениями площадь порядка 1 млн км2. В последние годы на чешской части Европейской болидной сети были установлены камеры с объективом типа «рыбий глаз».

Каждая станция Прерийной болидной сети была оснащена четырьмя широкоугольными камерами, которые позволяли непрерывно обозревать практически все небо. Станции располагались на расстоянии 250 км друг от друга, что позволяло охватить наблюдениями 1,7 млн км2.

За время работы болидных сетей было зарегистрировано свыше тысячи болидов (см., напр., рис. 5.9), для которых удалось точно рассчитать параметры орбит и такие физические величины, как начальная и конечная массы, высоты возгорания и потухания и т. п. В целом ряде случаев наблюдения болидов позволили точно определить место падения метеорита, полет которого в атмосфере был заснят аппаратурой болидной сети.

Астероидно-кометная опасность: вчера, сегодня, завтра - i_093.jpg

Рис. 5.9. Снимок болида, полученный на болидной камере. ((C)1998 — Photo by Vic Winter & Jennifer Dudley/ ICSTARS Astronomy, http://www.icstars.com/HTML/Leo98/leo1.htm)

Болидные сети создали основу нашего современного знания об околоземной популяции малых тел Солнечной системы. Было установлено, что кроме метеорных потоков существуют также болидные потоки [Терентьева, 1990], некоторые из них имеют генетическую связь с известными метеорными потоками. На основании обработки данных о болидах и метеорах была создана [Ceplecha, 1976] классификация метеороидов, порождающих метеоры и болиды (табл. 5.2).

Для большинства метеорных потоков были вычислены распределения по массам и их изменения в зависимости от расстояния до радианта. Эти данные свидетельствуют о том, что некоторые метеорные потоки вполне могут содержать крупные тела (размером в несколько десятков метров), которые могли бы породить такое явление, как Тунгусский метеорит.

Таблица 5.2. Классификация метеороидов по плотности и структуре (по данным [Ceplecha, 1976])
Астероидно-кометная опасность: вчера, сегодня, завтра - i_094.png

В связи с этим интересны исследования П. Дженнискенса, который обнаружил связь астероида 2003 EH1 с метеорным потоком Квадрантиды и предположил, что этот астероид является остатком родительской кометы. В 2005 г. Дженнискенс и Лиитинен [Jenniskens and Lyytinen, 2005] обнаружили такую же связь между астероидом 2003 WY25 и потоком Фенициды. В 2006 г. Дженнискенс и Голдмен высказали предположение, что старые метеорные потоки, помимо мелких метеороидов, могут также содержать и крупные тела — осколки разрушившихся родительских комет. И, наконец, в 2008 г. Дженнискенс и Ваубайлон [Jenniskens and Vaubaillon, 2008] нашли, что таким телом может быть вновь обнаруженный астероид 2008 ED69 и связан он с метеорным потоком каппа-Цигниды.

На основании этих данных можно утверждать, что существуют выделенные направления в околоземном пространстве, с которых можно в первую очередь ожидать появления крупных тел, сближающихся с Землей. Кроме, например, направлений на Солнце или на апекс, можно утверждать, что такими направлениями в периоды активности некоторых метеорных и болидных потоков являются направления на их радианты.

Способность метеорных следов отражать радиоволны широко используется при радиолокационных наблюдениях метеоров. Принципиальным отличием использования радиолокационного метода является то, что фиксируется не излучаемая метеороидом энергия, а отраженная или рассеянная метеорным следом электромагнитная энергия наземного передатчика. Этот метод дает возможность вести наблюдения в любое время суток и при любых погодных условиях. Кроме того, с помощью радиолокационных методов можно регистрировать метеоры до 12–13 звездной величины и очень точно измерять расстояние до метеора и его скорость. При дрейфе метеорного следа радиолокация позволяет измерить и скорость ветра на метеорных высотах.

В последние десятилетия для регистрации метеорных следов широко применяются телевизионные средства и системы с ПЗС-камерами. Например, для наблюдения метеоров в ИНАСАН используется уникальная камера FAVOR [Багров и др., 2000; 2003], установленная на станции «Архыз» (Северный Кавказ) (см. рис. 5.10 на вклейке). Она имеет проницающую силу по метеорам до 8,5–9,0m при поле зрения 18° × 22°. Камера FAVOR — широкоугольная высокоскоростная оптическая камера — разработана для поиска и исследования оптических транзиентов, связанных с гамма-всплесками. Однако ее характеристики позволяют эффективно обнаруживать движущиеся источники излучения как естественного, так и искусственного происхождения. На максимальной кадровой частоте 7,5 Гц обеспечивается проницающая сила около 12m в формате разложения 1380 × 1024 пикс. × 10 бит. Камера установлена на экваториальной монтировке. Угловой размер элемента разрешения составляет около 1′. Вся получаемая на максимальной кадровой частоте видеоинформация, в том числе и метеорные треки, непрерывно записывается на жесткий диск компьютера и параллельно анализируется в режиме реального времени. Питающая оптика представляет собой светосильный объектив (светосила 1:1,2) с апертурой 150 мм и фокусным расстоянием 180 мм. Конфигурация камеры позволяет записывать без предварительной обработки всю видеоинформацию на максимальной кадровой частоте в течение всей наблюдательной ночи (рис. 5.11).

Астероидно-кометная опасность: вчера, сегодня, завтра - i_095.jpg

Рис. 5.11. Ряд снимков телевизионного метеора, полученные камерой FAVOR

Другая методика наблюдения используется на станции Крыжановка Одесской астрономической обсерватории с июня 2003 г. и до настоящего времени. Метеорное патрулирование осуществляется с помощью наблюдательного комплекса метеорного патруля, который включает несколько наблюдательных установок. Основная наблюдательная программа выполнялась с помощью телескопа системы Шмидта 17/30 см (диаметр коррекционной пластины/диаметр зеркала) (рис. 5.12). В качестве панорамного приемника излучения использовалась монохромная камера «Watec LCL-902K», работающая в телевизионном режиме. Патруль позволяет фиксировать метеорные явления с временны́м разрешением 0,02 с. Кроме стационарных установок, которые ведут регулярные патрульные наблюдения на наблюдательной станции Крыжановка, существует экспедиционный метеорный патруль. Он используется во время экспедиций на остров Змеиный, как правило, во время действия метеорного потока Персеиды в августе (рис. 5.13).

Астероидно-кометная опасность: вчера, сегодня, завтра - i_096.jpg

Рис. 5.12. Телескоп системы Шмидта. Фокусное расстояние 50 см, поле зрения 36′ × 48′, проницающая сила 12,5m. (Рисунок предоставлен Ю. М. Горбаневым, ОАО НИИ Астрономическая обсерватория Одесского национального университета.)

Наблюдение тел массой менее 10-6 г наземными методами невозможно, так как подобные тела не порождают явление метеора, а, затормозившись в атмосфере, оседают в виде пыли. Зарегистрировать их выпадение на поверхность Земли нельзя. Лишь создание и запуск высотных ракет и космических аппаратов различного рода открыли возможность широкого изучения этих мелких метеороидов (точнее, межпланетной пыли). Регистрирующие устройства, размещенные на космических аппаратах, позволяют сегодня регистрировать микрометеороиды (пылинки) с массой до 10-13 г при скорости их движения перед ударом 30 км/с. С помощью космических аппаратов были получены данные о распределении микрометеороидов вплоть до орбит Марса и даже Сатурна.