Повышение точности определения орбиты требует новых и продолжительных наблюдений астероида. Однако условия оптической и радиолокационной видимости Апофиса таковы, что новые наблюдения станут возможными лишь в краткий период 2012–2013 гг. Кроме того, ограничения в точности оптических наблюдений и дальности радиолокационных траекторных измерений не позволяют получить достаточно информации и довести расчет событий 2029 г. до желаемой точности, а следовательно, получить уверенность в благополучном исходе пролета Апофиса мимо Земли.

Кардинальным решением была бы посылка радиомаяка на астероид [Chesley, 2006], что могло бы обеспечить определение орбиты и прогнозирование текущих координат Апофиса с ошибками, не превышающими немногих километров. В этом случае останется проблема точной коррекции движения с ошибками исполнения такого же порядка и выбор соответствующего способа ее реализации.

Следует отметить одно существенное обстоятельство. Сложность коррекции весьма зависит от времени ее проведения. Действительно, проведение коррекции до 2029 г. в принципе должно увести орбиту Апофиса лишь от попадания в ЗРВ. Однако для этого достаточно изменить текущую высоту пролета над Землей всего на несколько километров. Поэтому для такой коррекции потребуется весьма малый импульс силы, получение которого вполне реально имеющимися технологическими средствами.

Напротив, предположим, что уточнение орбиты до пролета Апофиса в 2029 г. провести не удалось, и лишь измерения реальной высоты прохода астероида могут подать сигнал реальной опасности: пройдена ЗРВ! В этом случае возникнет задача увода астероида на величину нескольких радиусов Земли. Проведение такой коррекции сложнее на несколько порядков [Chesley, 2006], и ее реализация будет проблематичной.

Поэтому задача повышения точности определения орбиты Апофиса с помощью радиомаяка, доставленного на астероид, приобретает особую актуальность. Такая доставка может быть произведена посылкой специального космического аппарата к Апофису, выводимого стандартным и недорогим носителем типа «Союз», хорошо освоенным космической промышленностью России.

Космический аппарат такой миссии одновременно со своей основной задачей может выполнить программу исследования астероида, определив его массу и структурные характеристики, необходимые для технического проектирования возможной операции увода. Кроме того, в ходе миссии будут получены данные о минералогическом составе астероида, что само по себе явится ценным научным результатом.

В заключение необходимо отметить, что новое сближение Апофиса с Землей в 2036 г. означает появление новой картины расположения зон резонансного возврата в последующий период. Снова возникнет вопрос о том, когда можно ожидать новых опасных сближений с данным астероидом. Пока ответа на этот вопрос нет, и ситуация опасности вследствие наличия многих ЗРВ может повториться снова. Отсюда вытекает необходимость ее заблаговременного детального анализа. В частности, должен быть найден ответ на вопрос, существуют ли какие-либо условия и ограничения на проведение коррекции орбиты в 2029 г. сверх тех, которые обсуждались выше? Проще говоря, как увести коррекцией орбиту Апофиса до 2029 г. от удара по Земле в 2036 г., но так, чтобы не получить удара по Земле в дальнейшем, после 2036 г.? И, наконец, насколько подобная ситуация может повториться при появлении другого астероида, пролетающего слишком близко к Земле? Сегодня ответов на эти вопросы нет.

Таким образом, изучение динамики астероида Апофис ставит не только частные проблемы, но и помогает полнее осознать проблему астероидной опасности.

10.9. Сравнительная характеристика способов противодействия

В этом разделе рассмотрены различные способы противодействия угрожающему телу. Перечислим основные способы воздействия на космические объекты, угрожающие столкновением с Землей, которые предлагались в литературе [Сокольский и др., 1996; Боярчук и др., 1999]:

— применение ядерного взрыва;

— кинетический удар;

— гравитационный буксир;

— использование ракетных реактивных ускорителей, установленных на поверхности астероида;

— направленный выброс вещества с поверхности астероида (например, за счет использования сфокусированной солнечной энергии);

— изменение орбиты астероида путем изменения влияния солнечного давления (покрытие астероида отражающим пластиком или краской);

— покрытие объекта специальным веществом для изменения орбиты с помощью эффекта Ярковского;

— установка солнечного паруса непосредственно на астероиде; — создание на пути угрожающего тела облака частиц или небольших объектов для его торможения.

Первые два способа могут быть использованы как для разрушения, так и для увода угрожающего тела, остальные же, по-видимому, могут осуществить лишь его увод. Рассмотрим эти способы.

В первой ситуации (разрушение) ключевым моментом любого используемого способа является возможность гарантированного разрушения объекта до требуемой степени дисперсности. Во второй ситуации решающей характеристикой действенности способа будет являться его способность обеспечить проведение запланированной и точной коррекции.

Именно с этих позиций, в первую очередь, следует рассматривать способы противодействия. Необходимо также оценить возможность доставки средства противодействия к астероиду.

10.9.1. Воздействие ядерным взрывом. Согласно предложениям, появившимся на ранних этапах обсуждения астероидной угрозы [Симоненко и др., 1994], одним из эффективных способов противодействия опасным объектам может служить использование ядерных взрывов большой мощности. Преимуществом этого способа является высокая концентрация энергии в ядерном заряде, что позволяет использовать сравнительно небольшой по массе и габаритам космический перехватчик. Разумеется, такой перехват должен произойти на достаточно большом расстоянии от Земли. Кроме того, необходимо уменьшить риск попадания продуктов взрыва и облученных обломков перехваченного объекта в атмосферу и на поверхность Земли.

Воздействие ядерного взрыва на космический объект создает: — изменение количества движения, получаемого космическим объектом при действии на него ударной волны (продуктов взрыва и обломков конструкции космического перехватчика);

— импульс скорости, возникающий вследствие реактивных сил, связанных с испарением поверхностного слоя астероида под действием проникающего излучения и расширения продуктов испарения в окружающее пространство;

— дополнительный импульс скорости, обусловленный реактивными силами, связанными с выбросом вещества астероида из образующейся при контактном взрыве воронки.

Результаты расчетов, представленные в работах [Симоненко, 1994; Дегтярь и др., 2008], показывают, что контактные подрывы ядерных

устройств мощностью 10–20 Мт на астероидах диаметром около 1–1,5 км и ядрах комет диаметром до 2,5 км могут создать приращение скорости 1–2 м/с. При этом контактный подрыв оказывается эффективнее неконтактного. Эффективность контактного подрыва может быть существенно увеличена путем заглубленного подрыва ядерного устройства. По оценкам, проведенным в РФЯЦ — ВНИИТФ [Симоненко и др., 1994; Симоненко и др., 2008], заглубление ядерного устройства на 1–2 м увеличивает приращение скорости в 2 раза, а заглубление на 10–15 м — в 7 раз.

Наряду с этим, исследования показали также возможность разрушения астероидов с помощью контактного взрыва ядерного заряда на его поверхности [Симоненко и др., 1994]. В табл. 10.2 приводятся результаты оценок мощности зарядов, необходимых для разрушения астероидов различных размеров, исходя из предполагаемой плотности астероида 3000 кг/м3.

Таблица 10.2. Мощность и масса заряда, необходимые для разрушения астероида
Астероидно-кометная опасность: вчера, сегодня, завтра - i_241.png