Объекты 22–24m могут сопровождаться инструментами с апертурой около 2 м и более. Таких инструментов в нашей стране единицы: это инфракрасный телескоп АЗТ-33ИК (ИСЗФ) с апертурой 1,7 м в Мондах, 2-м телескоп Цейсс-2000 (ТФ ИНАСАН) в Терсколе, 6-м телескоп в Архызе (САО), российско-турецкий 1,5-м телескоп, установленный недалеко от Антальи. Все эти телескопы также задействованы в научных наблюдательных программах, не связанных с регулярными наблюдениями опасных небесных тел. Поэтому очевидно, что вместе с проектированием телескопов обнаружения целесообразно проектировать и телескопы слежения. Телескопы слежения в принципе гораздо менее дорогостоящие, чем телескопы обнаружения. Требования к ним несколько другие. Рассмотрим их.
Предельная звездная величина телескопа слежения должна быть такой же или больше, чем у телескопа обнаружения. Это связано с тем, что получение достоверной информации о слабом объекте требует повышения отношения сигнал/шум. Это может быть достигнуто, с одной стороны, увеличением светового диаметра, а с другой — увеличением времени экспозиции (для телескопов обнаружения оно мало — не более 1 мин).
При полях зрения в несколько градусов в системе обнаружения для регистрации изображений должен использоваться приемник излучения гигапиксельных размеров. Это даст на выходе от нескольких до десятков гигабайт информации с одного изображения. Оперативная обработка такой информации возможна, но для обеспечения оперативности всей системы «обнаружение + слежение» желательно, чтобы оба телескопа работали в одном комплексе, т. е. были смонтированы в одном месте. Поле зрение телескопа слежения при этом можно уменьшить в несколько раз без потери эффективности. Это позволит несколько сократить расходы и, например, обойтись одной и не очень дорогой ПЗС-матрицей.
6.3.3. Наземная радиолокационная подсистема сопровождения АСЗ. Современные радиолокаторы могут, независимо от времени суток и метеоусловий, выполнить задачу уточнения орбит, определения размеров, скорости собственного вращения, формы и состава астероидов, пролетающих очень близко к Земле — на расстояниях менее 15–20 млн км. Такие астероиды очень быстро — за считанные часы — пересекают барьер обнаружения, так что их орбиту не удается определить достаточно точно, чтобы сформировать целеуказание наземным телескопам на ближайший благоприятный для наблюдений период. В западном полушарии такие радиолокаторы есть и уже работают по АСЗ. Это радиолокационная станция (РЛС) в Аресибо (ПуэртоРико), принадлежащая радиоастрономической обсерватории, и РЛС в Голд-стоуне (Калифорния), принадлежащая НАСА. Последний радиолокатор более пригоден для рассматриваемой цели, так как имеет поворотную антенну и, следовательно, более широкий рабочий сектор. В восточном полушарии имеется планетный радиолокатор в Евпатории, принадлежащий Украине, и РЛС FGAN в Германии. Вблизи Уссурийска установлена 70-м антенна дальней космической связи, такая же, как в Евпатории, на базе которой создается радиолокатор. В табл. 6.4 приведены для сравнения основные характеристики РЛС в Голдстоуне и Евпатории.
Дальность действия РЛС в Голдстоуне по астероиду километровых размеров оценивается в 15 млн км. Рассчитывать на существенное (на порядок или в несколько раз) увеличение дальности по АСЗ при разумных затратах энергии не приходится. Для зондирования АСЗ используются попеременно гладкие (для измерения доплеровской скорости) и ФМ— (фазоманипулированные, для измерения дальности и скорости) импульсы. Интересно отметить, что в 1989 г. на РЛС в Аресибо и Голдстоуне были проведены удачные эксперименты по получению радиоизображений астероида 1989 РВ на дальностях 5,5–8,5 млн км. Для получения изображений требуется отношение сигнал/шум того же порядка, что и для обнаружения (порядка 20), но не по телескопу в целом, а по каждому элементу разрешения. Поэтому предельные дальности для этого режима будут гораздо меньше. В России имеются две крупные (64 м) антенны, пригодные для создания радиолокационных станций наблюдения астероидов — в Медвежьих Озерах под Москвой и в Калязине (Тверская обл.), хотя их более северное расположение ограничивает зону наблюдения плоскости эклиптики в летние ночи и зимние дни. Кроме того, перспективы доработки и использования их в качестве радаров совершенно неясны.
Одной из областей высоких технологий, в которой Россия лидирует или находится на уровне США, является технология создания высокопотенциальных радиолокаторов с фазированными антенными решетками (ФАР), работающих в различных частотных диапазонах — от метрового до миллиметрового. По некоторым данным наличие в России отработанных и постоянно развивающихся технологий позволяет создавать в короткие сроки РЛС с любыми заданными характеристиками, в том числе с большой дальностью действия, высокой точностью определения параметров движения наблюдаемых объектов и способностью распознавать эти объекты по нетраекторным данным. РЛС с ФАР отличаются от оптических систем возможностью работать в любое время суток и при любых погодных условиях, обладают существенно большими поисковыми возможностями и повышенной способностью измерять не только угловые координаты, но и расстояние до объекта и его радиальную скорость.
Такие радиолокаторы уже сегодня успешно функционируют в системах ракетно-космической обороны (РКО): системе предупреждения о ракетном нападении (СПРН), системе контроля космического пространства (СККП), системе и комплексах противоракетной обороны (ПРО), выполняя поставленные перед ними задачи по обнаружению боеголовок баллистических ракет и космических объектов с малыми отражающими поверхностями на достаточно больших расстояниях с обеспечением высокой точности определения параметров движения этих объектов.
Созданные и создаваемые в составе систем РКО уникальные радиолокационные станции, работающие в различных частотных диапазонах и расположенные во многих районах России и СНГ, развитая система передачи данных и связи, мощные вычислительные центры, а также накопленный в течение длительного периода разработки, создания и эксплуатации этих систем огромный научно-технический и технологический потенциал могут использоваться и в других областях жизнедеятельности общества в целях достижения устойчивого развития цивилизации и обеспечения глобальной безопасности.
Указанные выше РЛС РКО, а при необходимости специально созданные с использованием отработанной технологии и сложившейся кооперации средства в комплексе с имеющимися командно-вычислительными центрами могут составить основу системы информационного обеспечения космической деятельности России и других государств в XXI в. Эти РЛС, работая совместно с оптическими средствами, могут обеспечить решение задач обнаружения и каталогизации потенциально опасных объектов, определения параметров их движения, наведения на них перехватчиков или транспортных кораблей. РЛС могут также осуществлять наблюдение за космическим мусором, получать информацию об аварийных ситуациях в космосе и данные для проведения восстановительных и спасательных работ, в том числе данные для управления запусками и посадками космических аппаратов.
Энергетические возможности созданных в России мощных дежурных РЛС системы предупреждения о ракетном нападении и противоракетной обороны позволяют обеспечить обнаружение и устойчивое сопровождение в штатном режиме работы космических объектов размером 10 м и типичным для АСЗ радиолокационным альбедо 0,1–0,2 на дальностях до 22 тыс. км, 100 м — до 71 тыс. км, 1000 м — до 223 тыс. км. При использовании в РЛС режима накопления сигнала дальность обнаружения космических объектов диаметром 1 км может быть доведена до 1–5 млн км. Дальнейшие возможности увеличения дальности действия при работе по астероидам ограничены способностью РЛС осуществлять когерентное накопление сигналов и, по-видимому, потребуют существенной аппаратурной модернизации существущих РЛС или создания новых специализированных РЛС на основе разработанных технологий.